Gene of the month: T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) ===================================================================================== * Louisa Bolm * Natalie Petruch * Shivan Sivakumar * Nicola E Annels * Adam Enver Frampton ## Abstract Immune modulators play a crucial role in carcinogenesis and cancer progression by impairing cancer cell-targeted immune responses. T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) regulates T-cell function and cancer cell recognition and was therefore identified as a promising target for cancer immunotherapy. TIGIT is expressed in T cells and natural killer (NK) cells and has three ligands: CD155, CD112 and CD113. CD155 binds TIGIT with the highest affinity and promotes direct and indirect downregulation of T-cell response. TIGIT signalling further inhibits NK function and secretion of proinflammatory cytokines. An association between TIGIT expression and poor survival was identified in multiple cancer entities. Blocking TIGIT with monoclonal antibodies, and a combination of TIGIT and programmed cell death protein 1 blockade in particular, prevented tumour progression, distant metastasis and tumour recurrence in in vivo models. Inhibition of TIGIT is currently evaluated in first clinical trials. * pathology * molecular * leukocytes * molecular biology * immunoglobulins ## Introduction T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) is a T-cell receptor involved in limiting T-cell function and adaptive immune responses in the context of cancer immune evasion mechanisms.1 2 TIGIT was discovered in an effort to identify additional costimulatory or inhibitory molecules expressed on activated human T cells.3 In this context, Yu *et al* performed genomic searches for genes specifically expressed in T cells that have a protein domain structure representative of immunomodulatory receptors. TIGIT is mostly expressed by T cells and natural killer (NK) cells. Different T-cell subsets like CD4+ T cells, CD8+ T cells, regulatory T cells (Tregs) and follicular T helper cells as well as NK cells show varying expression levels of TIGIT.3 4 In healthy individuals, the highest expression of TIGIT is found in Tregs, memory and activated T cells and NK cells.5 TIGIT acts as a negative modulator of cancer cell-targeted T-cell response and was identified as a potential target of immune checkpoint inhibition in different malignancies.6 7 ## Structure The TIGIT gene encodes a surface protein of the poliovirus receptor family of immunoglobin proteins that is expressed on regulatory, memory and activated T cells as well as NK cells.3 8 Structurally, TIGIT is composed of multiple domains: an extracellular immunoglobulin variable (IgV) domain, a type 1 transmembranous domain and a cytoplasmic tail consisting of an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoglobulin tyrosine tail (ITT)-like motif. The phosphorylation of the cytoplasmic tail initiates an inhibitory signalling cascade on TIGIT binding to its ligand (figure 1).3 8 ![Figure 1](http://jcp.bmj.com/https://jcp.bmj.com/content/jclinpath/75/4/217/F1.medium.gif) [Figure 1](http://jcp.bmj.com/content/75/4/217/F1) Figure 1 TIGIT consists of three domains: an extracellular IgV domain, a type 1 transmembranous domain and a cytoplasmic tail consisting of an ITIM and an ITT-like motif. The phosphorylation of the cytoplasmic tail initiates an inhibitory signalling cascade on TIGIT binding to its ligand. The extracellular IgV domain binds a family of nectin proteins expressed on the surface of antigen-presenting cells or tumour cells in a lock-and-key mechanism: CD155, CD112 and CD113. CD155 is bound by the TIGIT receptor in a dose-dependent manner competitively, thereby directly blocking CD155 binding to the competing receptor CD226. IgV, immunoglobulin variable; ITIM, immunoreceptor tyrosine-based inhibitory motif; ITT, immunoglobulin tyrosine tail; NK, natural killer; PVR, poliovirus receptor; TIGIT, T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains. The extracellular IgV domain binds a family of nectin proteins expressed on the surface of antigen-presenting cells or tumour cells in a lock-and-key mechanism: CD155, CD112 and CD113.8 TIGIT binds CD155 with the highest affinity as compared with competing receptors, followed by CD96, and the immunoactivator CD226 showing the lowest affinity for CD155.3 6 9 CD155 is mainly expressed on dendritic cells (DCs), T cells, B cells and macrophages,3 6 10 11 but also on fibroblasts and endothelial cells.12 Crystal structure analysis shows that on binding CD155, the newly formed TIGIT/CD155 dimers cluster into a heterotetramer which mediates cell adhesion and signalling between the cells.12 CD155 is bound by the TIGIT receptor in a dose-dependent manner competitively, thereby directly blocking CD155 binding to the competing receptor CD226. This inhibition is further supported by cell-intrinsic signals directly by signalling cascades initiated on phosphorylation of TIGIT’s cytoplasmic tail.6 13 ## Function TIGIT acts as an immune modulator and inhibits effector T cells and NK cells.6 TIGIT effects are mediated by binding TIGIT’s primary receptor CD155 and by direct inhibition of T-cell responses.6 13 14 TIGIT interacts with CD155 on DC, leading to an increase in the secretion of interleukin (IL)-10 and a decrease in proinflammatory cytokines such as IL-12p40, IL-12p70 and IL-18.3 These functionally impaired DC lead to an indirect decrease in T-cell response.3 In the presence of TIGIT-modulated DC, T-cell proliferation is reduced by at least 50% and T-cell activation is inhibited.3 TIGIT also binds CD155 expressed on macrophages.15 In mice, TIGIT promotes the polarisation of CD155‐expressing type 1 proinflammatory macrophages into immunosuppressive IL‐10‐secreting type 2 macrophages. CD226 is a costimulatory receptor widely expressed by immune cells, including T cells, NK cells and monocytes. TIGIT impedes CD155-mediated CD226 activation, ultimately impairing T-cell function in different T-cell subsets.16 TIGIT knock‐down in human CD4+ T cells increased their expression of T‐bet and interferon gamma (IFN‐γ); however, this effect can be overcome by CD226 blockade.17 Furthermore, TIGIT suppresses mouse CD8+ T-cell responses in a CD226-dependent manner.13 The TIGIT–CD226 axis with TIGIT outcompeting CD226 for binding of CD155 is essential in TIGIT-mediated immune modulation. TIGIT-CD155 signalling via the intracellular ITIM domain of TIGIT can restrict not only T-cell but also NK-cell response.14 TIGIT plays a major role in NK-cell exhaustion and limits tumor cell-directed NK-cell cytotoxic effects.18 TIGIT-positive NK cells showed characteristics of exhaustion and dysfunction such as weakened killing function, reduced cytokine production and proliferation.19 TIGIT inhibits NK-cell degranulation, cytokine production and NK cell-mediated cytotoxicity against CD155-expressing tumour cells.20 21 TIGIT-derived interference with NK toxicity and IFN‐γ production is mediated by the ITT motive via different signalling pathways.20 21 TIGIT is highly expressed in a subset of Tregs.22 23 These TIGIT-positive Tregs specifically suppress T-helper type 1 and T-helper type 17 T-cell responses.22 Taken together, all direct and indirect pathways of TIGIT binding result in suppression of T-cell and NK-cell functions. This mechanism of immune evasion makes TIGIT an attractive target to study in the context of malignant disease. ## TIGIT expression in malignancy In healthy individuals, the immune system plays an important role in eliminating malignant cells.1 24 Immune checkpoint mechanisms moderate immune responses to restrict excessive T-cell or NK-cell cytotoxicity. These modulating effects are important in preventing major tissue damage or autoimmunity. Immune checkpoint signalling, however, is used by tumour cells to evade immune surveillance.6 These pathways involve receptor–ligand pairings that ultimately suppress the effector functions of T cells and NK cells and thereby downregulate antitumour immunity.17 In vivo models of TIGIT deficiency highlighted the crucial role of TIGIT in tumour progression. Compared with wild‐type mice, growth of colon and breast cancer subcutaneous tumours was suppressed in TIGIT-deficient mice, and overall survival was increased in myeloma models.7 25 TIGIT deficiency further protected mice against B16 experimental lung metastasis.26 TIGIT is widely expressed across different cancer entities, and studies in both mice and humans report increased TIGIT expression on tumour‐infiltrating lymphocytes (TILs) in melanoma, pancreatic cancer, breast cancer, non‐small‐cell lung carcinoma, colon adenocarcinoma, gastric cancer, acute myeloid leukaemia (AML) and multiple myeloma.6 7 13 27–30 A growing body of evidence suggests a role for TIGIT in disease recurrence and patient prognosis in patients with various malignancies. TIGIT expression on TILs of patients with melanoma or on peripheral blood CD8+ T cells of patients with gastric cancer correlated with metastases formation and impaired overall survival.28 31 In patients with melanoma, a high TIGIT:DNAM‐1 expression ratio on tumour‐infiltrating Tregs was demonstrated to be associated with reduced overall survival rates.32 There are now a couple of studies showing that TIGIT is highly expressed in pancreatic cancer, and this is mainly on Tregs, CD8+ T cells and NK cells.33 34 Furthermore, in a recent article, in animal models of pancreatic cancer, monoclonals of TIGIT and PD-1 with CD40 agonists proved to have a significant survival benefit.35 TIGIT is furthermore involved in AML recurrence and a strong correlation was observed between TIGIT expression on peripheral blood CD8+ T cells and AML relapse post‐transplantation.29 TIGIT overexpression is part of the highly immunosuppressive microenvironment of pancreatic cancer.36 Mapping of the tumour and immune cell landscape in pancreatic cancer revealed an increase in TIGIT expression and a corresponding higher number of dysfunctional CD8+ T cells in advanced stage disease.34 The major role of TIGIT for cancer progression in various cancer entities makes TIGIT an attractive target for immune checkpoint inhibition. ### TIGIT-targeted monotherapy The rationale for targeting TIGIT is to reverse immune invasion of cancer cells and to re-establish cancer-targeted T-cell and NK-cell cytotoxicity. Different monoclonal antibodies (mAbs) binding the TIGIT receptor in T cells and NK cells were established over the past years.6 37 Anti‐TIGIT mAb therapy administered while establishing CT26 subcutaneous tumours and methylcholanthrene‐induced fibrocarcinomas hindered tumour growth and protected mice against 4T1 or B16 experimental metastasis.26 In melanoma patient-derived xenograft models reconstituted with human haematopoietic stem cells, etigilimab, a TIGIT-targeting mAb, impaired tumour growth.38 Another group found that anti‐TIGIT mAbs protected mice against Vk12653 myeloma recurrence after haematopoietic stem cell transplantation.39 In another myeloma mouse model, TIGIT-blocking mAbs reduced tumour burden in a CD8+ T cell‐dependent manner and prolonged overall survival.7 Despite these promising results, other studies found no effect of anti-TIGIT mAbs in xenograft models bearing advanced tumours.13 40 These heterogeneous results of anti-TIGIT monotherapy highlight the need for combination therapies potentially enhancing the effect of immune checkpoint blockade. ### TIGIT-targeted combination therapy Since TIGIT-targeting mAbs alone may not have a sufficient effect on tumour progression, combination immune checkpoint inhibition strategies are evaluated in different cancer entities. In both mouse models and patient samples across cancer entities, TIGIT is often coexpressed with programmed cell death protein 1 (PD-1) on CD8+ TILs.13 41 PD-1 checkpoint blockade proved a highly effective treatment in multiple cancer entities, including melanoma and non-small cell lung cancer.37 42 The mechanism behind combined TIGIT and PD-1 blockade is mainly based on shifting CD155 signalling towards CD226 activation since the TIGIT +PD-1 therapeutic effect can be abrogated by CD226 blockade.13 41 Additionally, PD-1 induces SHP2-mediated CD226 dephosphorylation, further supporting the need for combined PD-1 +TIGIT blockade to promote CD226 signalling.43 Jin *et al* suggest that CD226 may even qualify as a predictive biomarker of combined TIGIT +PD-1 targeted therapy.44 The authors found that high expression of CD226 in CD8+ cells improved self-renewal capacity and responsiveness to TIGIT-targeted therapy in pancreatic cancer. Interestingly, mFOLFIRINOX therapy increased the rates of CD8+ cells with high CD226 expression, potentially increasing the effects of combined TIGIT +PD-1 blockade. In vivo studies of combined TIGIT+PD-1 blockade show impressive results inducing tumour regression and preventing distal tumour spread. Johnston *et al* investigated combined anti‐TIGIT mAbs with PD‐1 or PD‐L1 blockade in xenograft models of colon (CT26) and breast (EMT6) cancer.13 Combined therapy induced mostly complete tumour regression in a CD8+ T cell-dependent manner with an increase in IFN‐γ production. In another mouse model of colon cancer (MC38), TIGIT+PD‐1 blockade was associated with enhanced effector cell functions of both CD4+ and CD8+ T cells compared with either therapy alone, and combined therapy led to a 100% cure rate.40 TIGIT+PD-1 blockade further protected mice from orthotopically implanted GL261 glioblastoma tumour formation.45 Besides the effects of TIGIT blockade on T cells, TIGIT blockade alone and in combination with PD-1 blockade can play a crucial role in reversing NK-cell exhaustion, unleashing NK-cell cytotoxicity and boosting synergetic effects with adaptive T-cell immunity.18 TIGIT blockade enhanced degranulation and IFN-γ production of NK cells in response to ovarian cancer tumour cells in vivo.46 Blockade of TIGIT prevented NK-cell exhaustion and promoted NK cell-dependent tumour immunity in mouse models of colon cancer. Furthermore, blockade of TIGIT resulted in potent tumor-specific T-cell immunity in an NK cell-dependent manner, enhanced therapeutic effects with PD-1-targeted therapy and sustained memory immunity in tumour rechallenge models.26 Novel anti-TIGIT monoclonal antibodies with the specific purpose of enhancing NK-cell immunity such as AET2010 are currently being developed and tested in in vivo settings.47 Besides TIGIT+PD-1 blockade, further TIGIT combination therapies are currently explored. TIGIT-positive NK cells were found to coexpress TIM-3, another inhibitory receptor.26 TIGIT and TIM-3 synergise to suppress antitumor immune responses in mice and are therefore a promising target for combination therapies.25 Chauvin *et al* investigated a combined TIGIT blockade with IL-15 stimulation in MHC class I-deficient melanoma, which is refractory to CD8+ T cell-mediated immunity.48 The combination blockade increased NK cell-mediated cytotoxicity in vitro and decreased tumour metastasis in mouse melanoma models. Antitumour effects of TIGIT combined therapy are impressive and call for further evaluation in first clinical trials. ### TIGIT blockade in clinical trials TIGIT checkpoint inhibition has entered clinical trials, and six different TIGIT-blocking mAbs are currently available.49 The anti-TIGIT mAb etigilimab was entered into a phase I, dose‐escalation study (NCT031119428) as monotherapy or in combination with anti-PD-1 mAb nivolumab to treat advanced or metastatic solid malignancies.50 Etigilimab was well tolerated with low toxicity profiles at doses of up to 20 mg/kg. Rodriguez-Abreu *et al* evaluated combined TIGIT+PD-1 versus PD-1 blockade alone in a randomised phase II trial in patients with PD-1-positive non-small cell lung cancer.37 Combined TIGIT+PD-1 blockade was superior to PD-1 blockade alone as a first-line therapy in terms of overall response rates and progression-free survival despite similar toxicity profiles. Five clinical phase I and II trials are currently investigating combined TIGIT blockade alone or TIGIT+PD-1 blockade in patients with advanced or metastatic solid malignancies ([NCT03628677](http://jcp.bmj.com/lookup/external-ref?link\_type=CLINTRIALGOV&access\_num=NCT03628677&atom=%2Fjclinpath%2F75%2F4%2F217.atom), [NCT02964013](http://jcp.bmj.com/lookup/external-ref?link\_type=CLINTRIALGOV&access\_num=NCT02964013&atom=%2Fjclinpath%2F75%2F4%2F217.atom), [NCT02913313](http://jcp.bmj.com/lookup/external-ref?link\_type=CLINTRIALGOV&access\_num=NCT02913313&atom=%2Fjclinpath%2F75%2F4%2F217.atom), [NCT03260322](http://jcp.bmj.com/lookup/external-ref?link\_type=CLINTRIALGOV&access\_num=NCT03260322&atom=%2Fjclinpath%2F75%2F4%2F217.atom) and [NCT03945253](http://jcp.bmj.com/lookup/external-ref?link\_type=CLINTRIALGOV&access\_num=NCT03945253&atom=%2Fjclinpath%2F75%2F4%2F217.atom)). Another phase II trial evaluates TIGIT+PD-1 blockade in advanced or metastatic non-small cell lung cancer ([NCT03563716](http://jcp.bmj.com/lookup/external-ref?link\_type=CLINTRIALGOV&access_num=NCT03563716&atom=%2Fjclinpath%2F75%2F4%2F217.atom)). One trial is testing agonistic anti-CD226 blockade in solid malignancies ([NCT04099277](http://jcp.bmj.com/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT04099277&atom=%2Fjclinpath%2F75%2F4%2F217.atom)). ## Conclusions TIGIT is a major immune checkpoint promoting tumour cell immune evasion from T-cell and NK-cell cytotoxicity via binding of its primary ligand CD155. TIGIT overexpression was found in various malignancies and is associated with cancer progression, distant metastases and impaired patient prognosis. Combined checkpoint blockade of TIGIT+PD-1 shows impressive tumour regression *in vivo*, and first clinical trials yield encouraging results for this combination therapy. Several questions still need to be addressed. Can combined TIGIT blockade overcome the immunosuppressive microenvironment and is it effective even in advanced stages of cancer? Moreover, which cancer entities benefit most from TIGIT blockade and what criteria could be applied to select ideal candidates for TIGIT-targeted therapies? A more in-depth understanding of TIGIT interaction with other components of the tumour microenvironment and future clinical trials evaluating TIGIT combination blockade therapies are warranted. ### Take home messages * T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) is a T-cell immunoreceptor primarily binding CD155 as a ligand. * It is found expressed on T cells and NK cells. * TIGIT impairs T-cell and NK cell cytotoxicity directly and indirectly via binding CD155. * Blockade of TIGIT and combined blockade of TIGIT+programmed cell death protein 1 (PD-1) in particular show impressive tumor regression in multiple cancer entities *in vivo*. * Combined TIGIT+PD-1 blockade is currently evaluated in multiple clinical trials,;first results show no excess toxicity and promising effects on response rates of progression-free survival. ## Ethics statements ### Patient consent for publication Not applicable. ## Footnotes * Handling editor Runjan Chetty. * Contributors Conception or design: LB, NP and AEF. Acquisition, analysis or interpretation of data: LB and NP. Drafting the work or revising it critically for important intellectual content: LB, NP, SS, NEA and AEF. Final approval of the version to be published: LB, NP, SS, NEA and AEF. * Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors. * Competing interests None declared. * Provenance and peer review Commissioned; internally peer reviewed. ## References 1. Chew GM , Fujita T , Webb GM , et al . Tigit marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLoS Pathog 2016;12:e1005349.[doi:10.1371/journal.ppat.1005349](http://dx.doi.org/10.1371/journal.ppat.1005349) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26741490 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1371/journal.ppat.1005349&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=26741490&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 2. Blackburn SD , Shin H , Haining WN , et al . Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009;10:29–37.[doi:10.1038/ni.1679](http://dx.doi.org/10.1038/ni.1679) pmid:http://www.ncbi.nlm.nih.gov/pubmed/19043418 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/ni.1679&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=19043418&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000261788800009&link_type=ISI) 3. Yu X , Harden K , Gonzalez LC , et al . The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 2009;10:48–57.[doi:10.1038/ni.1674](http://dx.doi.org/10.1038/ni.1674) pmid:http://www.ncbi.nlm.nih.gov/pubmed/19011627 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/ni.1674&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=19011627&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000261788800011&link_type=ISI) 4. Boles KS , Vermi W , Facchetti F , et al . A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol 2009;39:695–703.[doi:10.1002/eji.200839116](http://dx.doi.org/10.1002/eji.200839116) pmid:http://www.ncbi.nlm.nih.gov/pubmed/19197944 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/eji.200839116&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=19197944&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 5. Levin SD , Taft DW , Brandt CS , et al . Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol 2011;41:902–15.[doi:10.1002/eji.201041136](http://dx.doi.org/10.1002/eji.201041136) pmid:http://www.ncbi.nlm.nih.gov/pubmed/21416464 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/eji.201041136&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=21416464&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 6. Harjunpää H , Guillerey C . TIGIT as an emerging immune checkpoint. Clin Exp Immunol 2020;200:108–19.[doi:10.1111/cei.13407](http://dx.doi.org/10.1111/cei.13407) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31828774 [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 7. Guillerey C , Harjunpää H , Carrié N , et al . TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood 2018;132:1689–94.[doi:10.1182/blood-2018-01-825265](http://dx.doi.org/10.1182/blood-2018-01-825265) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29986909 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMToiMTMyLzE2LzE2ODkiO3M6NDoiYXRvbSI7czoyNDoiL2pjbGlucGF0aC83NS80LzIxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 8. Yeo J , Ko M , Lee D-H , et al . TIGIT/CD226 axis regulates anti-tumor immunity. Pharmaceuticals 2021;14:200.[doi:10.3390/ph14030200](http://dx.doi.org/10.3390/ph14030200) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33670993 [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 9. Tahara-Hanaoka S , Shibuya K , Onoda Y , et al . Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 2004;16:533–8.[doi:10.1093/intimm/dxh059](http://dx.doi.org/10.1093/intimm/dxh059) pmid:http://www.ncbi.nlm.nih.gov/pubmed/15039383 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1093/intimm/dxh059&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=15039383&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000220486900002&link_type=ISI) 10. Stanietsky N , Rovis TL , Glasner A , et al . Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur J Immunol 2013;43:2138–50.[doi:10.1002/eji.201243072](http://dx.doi.org/10.1002/eji.201243072) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23677581 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/eji.201243072&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=23677581&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 11. Samanta D , Guo H , Rubinstein R , et al . Structural, mutational and biophysical studies reveal a canonical mode of molecular recognition between immune receptor TIGIT and nectin-2. Mol Immunol 2017;81:151–9.[doi:10.1016/j.molimm.2016.12.003](http://dx.doi.org/10.1016/j.molimm.2016.12.003) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27978489 [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 12. Stengel KF , Harden-Bowles K , Yu X , et al . Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci U S A 2012;109:5399–404.[doi:10.1073/pnas.1120606109](http://dx.doi.org/10.1073/pnas.1120606109) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22421438 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiMTA5LzE0LzUzOTkiO3M6NDoiYXRvbSI7czoyNDoiL2pjbGlucGF0aC83NS80LzIxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 13. Johnston RJ , Comps-Agrar L , Hackney J , et al . The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 2014;26:923–37.[doi:10.1016/j.ccell.2014.10.018](http://dx.doi.org/10.1016/j.ccell.2014.10.018) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25465800 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.ccell.2014.10.018&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=25465800&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 14. Stanietsky N , Simic H , Arapovic J , et al . The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A 2009;106:17858–63.[doi:10.1073/pnas.0903474106](http://dx.doi.org/10.1073/pnas.0903474106) pmid:http://www.ncbi.nlm.nih.gov/pubmed/19815499 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTA2LzQyLzE3ODU4IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qY2xpbnBhdGgvNzUvNC8yMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 15. Chen X , Lu P-H , Liu L , et al . TIGIT negatively regulates inflammation by altering macrophage phenotype. Immunobiology 2016;221:48–55.[doi:10.1016/j.imbio.2015.08.003](http://dx.doi.org/10.1016/j.imbio.2015.08.003) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26307002 [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 16. Shibuya A , Campbell D , Hannum C , et al . DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 1996;4:573–81.[doi:10.1016/s1074-7613(00)70060-4](http://dx.doi.org/10.1016/s1074-7613(00)70060-4) pmid:http://www.ncbi.nlm.nih.gov/pubmed/8673704 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/S1074-7613(00)70060-4&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=8673704&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=A1996UU44300006&link_type=ISI) 17. Lozano E , Dominguez-Villar M , Kuchroo V , et al . The TIGIT/CD226 axis regulates human T cell function. J Immunol 2012;188:3869–75.[doi:10.4049/jimmunol.1103627](http://dx.doi.org/10.4049/jimmunol.1103627) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22427644 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiamltbXVub2wiO3M6NToicmVzaWQiO3M6MTA6IjE4OC84LzM4NjkiO3M6NDoiYXRvbSI7czoyNDoiL2pjbGlucGF0aC83NS80LzIxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 18. Stojanovic A , Cerwenka A . Checkpoint inhibition: NK cells enter the scene. Nat Immunol 2018;19:650–2.[doi:10.1038/s41590-018-0142-y](http://dx.doi.org/10.1038/s41590-018-0142-y) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29915295 [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 19. Yu L , Liu X , Wang X , et al . TIGIT + TIM-3 + NK cells are correlated with NK cell exhaustion and disease progression in patients with hepatitis B virus‑related hepatocellular carcinoma. Oncoimmunology 2021;10:1942673.[doi:10.1080/2162402X.2021.1942673](http://dx.doi.org/10.1080/2162402X.2021.1942673) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34249476 [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 20. Li M , Xia P , Du Y , et al . T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-γ production of natural killer cells via β-arrestin 2-mediated negative signaling. J Biol Chem 2014;289:17647–57.[doi:10.1074/jbc.M114.572420](http://dx.doi.org/10.1074/jbc.M114.572420) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24817116 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyODkvMjUvMTc2NDciO3M6NDoiYXRvbSI7czoyNDoiL2pjbGlucGF0aC83NS80LzIxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 21. Liu S , Zhang H , Li M , et al . Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ 2013;20:456–64.[doi:10.1038/cdd.2012.141](http://dx.doi.org/10.1038/cdd.2012.141) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23154388 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/cdd.2012.141&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=23154388&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 22. Joller N , Lozano E , Burkett PR , et al . Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 2014;40:569–81.[doi:10.1016/j.immuni.2014.02.012](http://dx.doi.org/10.1016/j.immuni.2014.02.012) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24745333 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.immuni.2014.02.012&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=24745333&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) [Web of Science](http://jcp.bmj.com/lookup/external-ref?access_num=000334849400014&link_type=ISI) 23. Fuhrman CA , Yeh W-I , Seay HR , et al . Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J Immunol 2015;195:145–55.[doi:10.4049/jimmunol.1402381](http://dx.doi.org/10.4049/jimmunol.1402381) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25994968 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiamltbXVub2wiO3M6NToicmVzaWQiO3M6OToiMTk1LzEvMTQ1IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qY2xpbnBhdGgvNzUvNC8yMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 24. Alifano M , Mansuet-Lupo A , Lococo F , et al . Systemic inflammation, nutritional status and tumor immune microenvironment determine outcome of resected non-small cell lung cancer. PLoS One 2014;9:e106914.[doi:10.1371/journal.pone.0106914](http://dx.doi.org/10.1371/journal.pone.0106914) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25238252 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1371/journal.pone.0106914&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=25238252&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 25. Kurtulus S , Sakuishi K , Ngiow S-F , et al . TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 2015;125:4053–62.[doi:10.1172/JCI81187](http://dx.doi.org/10.1172/JCI81187) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26413872 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1172/JCI81187&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=26413872&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 26. Zhang Q , Bi J , Zheng X , et al . Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol 2018;19:723–32.[doi:10.1038/s41590-018-0132-0](http://dx.doi.org/10.1038/s41590-018-0132-0) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29915296 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1038/s41590-018-0132-0&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=29915296&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 27. O'Brien SM , Klampatsa A , Thompson JC , et al . Function of human tumor-infiltrating lymphocytes in early-stage non-small cell lung cancer. Cancer Immunol Res 2019;7:896–909.[doi:10.1158/2326-6066.CIR-18-0713](http://dx.doi.org/10.1158/2326-6066.CIR-18-0713) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31053597 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FuaW1tIjtzOjU6InJlc2lkIjtzOjc6IjcvNi84OTYiO3M6NDoiYXRvbSI7czoyNDoiL2pjbGlucGF0aC83NS80LzIxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 28. Stålhammar G , Seregard S , Grossniklaus HE . Expression of immune checkpoint receptors indoleamine 2,3-dioxygenase and T cell Ig and ITIM domain in metastatic versus nonmetastatic choroidal melanoma. Cancer Med 2019;8:2784–92.[doi:10.1002/cam4.2167](http://dx.doi.org/10.1002/cam4.2167) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30993893 [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 29. Kong Y , Zhu L , Schell TD , et al . T-Cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T-cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res 2016;22:3057–66.[doi:10.1158/1078-0432.CCR-15-2626](http://dx.doi.org/10.1158/1078-0432.CCR-15-2626) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26763253 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6MTA6IjIyLzEyLzMwNTciO3M6NDoiYXRvbSI7czoyNDoiL2pjbGlucGF0aC83NS80LzIxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 30. He W , Zhang H , Han F , et al . CD155T/TIGIT Signaling Regulates CD8+ T-cell Metabolism and Promotes Tumor Progression in Human Gastric Cancer. Cancer Res 2017;77:6375–88.[doi:10.1158/0008-5472.CAN-17-0381](http://dx.doi.org/10.1158/0008-5472.CAN-17-0381) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28883004 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI3Ny8yMi82Mzc1IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qY2xpbnBhdGgvNzUvNC8yMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 31. Tang W , Pan X , Han D , et al . Clinical significance of CD8+ T cell immunoreceptor with Ig and ITIM domains+ in locally advanced gastric cancer treated with SOX regimen after D2 gastrectomy. Oncoimmunology 2019;8:e1593807.[doi:10.1080/2162402X.2019.1593807](http://dx.doi.org/10.1080/2162402X.2019.1593807) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31069158 [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 32. Fourcade J , Sun Z , Chauvin J-M , et al . CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight 2018;3. doi:[doi:10.1172/jci.insight.121157](http://dx.doi.org/10.1172/jci.insight.121157). [Epub ahead of print: 26 07 2018].pmid:http://www.ncbi.nlm.nih.gov/pubmed/30046006 [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 33. Sivakumar S , Abu-Shah E , Ahern DJ , et al . Activated regulatory T-cells, dysfunctional and senescent T-cells hinder the immunity in pancreatic cancer. Cancers 2021;13. doi:[doi:10.3390/cancers13081776](http://dx.doi.org/10.3390/cancers13081776). [Epub ahead of print: 08 04 2021].pmid:http://www.ncbi.nlm.nih.gov/pubmed/33917832 [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 34. Steele NG , Carpenter ES , Kemp SB , et al . Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat Cancer 2020;1:1097–112.[doi:10.1038/s43018-020-00121-4](http://dx.doi.org/10.1038/s43018-020-00121-4) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34296197 [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 35. Freed-Pastor WA , Lambert LJ , Ely ZA , et al . The CD155/TIGIT axis promotes and maintains immune evasion in neoantigen-expressing pancreatic cancer. Cancer Cell 2021;39:1342–60.[doi:10.1016/j.ccell.2021.07.007](http://dx.doi.org/10.1016/j.ccell.2021.07.007) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34358448 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.ccell.2021.07.007&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 36. Romero JM , Grünwald B , Jang G-H , et al . A Four-Chemokine signature is associated with a T-cell-Inflamed phenotype in primary and metastatic pancreatic cancer. Clin Cancer Res 2020;26:1997–2010.[doi:10.1158/1078-0432.CCR-19-2803](http://dx.doi.org/10.1158/1078-0432.CCR-19-2803) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31964786 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6OToiMjYvOC8xOTk3IjtzOjQ6ImF0b20iO3M6MjQ6Ii9qY2xpbnBhdGgvNzUvNC8yMTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 37. Rodriguez-Abreu D , Johnson ML , Hussein MA , et al . Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J Clin Oncol 2020;38(15 suppl):9503.[doi:10.1200/JCO.2020.38.15_suppl.9503](http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.9503) 38. Park AI , Srivastava M , Mayes E . Abstract 2003: antibody against TIGIT (T cell immunoreceptor with Ig and ITIM domains) induces anti-tumor immune response and generates long-term immune memory. Cancer Res 20172003;77(13 Suppl). 39. Minnie SA , Kuns RD , Gartlan KH , et al . Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood 2018;132:1675–88.[doi:10.1182/blood-2018-01-825240](http://dx.doi.org/10.1182/blood-2018-01-825240) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30154111 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMToiMTMyLzE2LzE2NzUiO3M6NDoiYXRvbSI7czoyNDoiL2pjbGlucGF0aC83NS80LzIxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 40. Dixon KO , Schorer M , Nevin J , et al . Functional Anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J Immunol 2018;200:3000–7.[doi:10.4049/jimmunol.1700407](http://dx.doi.org/10.4049/jimmunol.1700407) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29500245 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiamltbXVub2wiO3M6NToicmVzaWQiO3M6MTA6IjIwMC84LzMwMDAiO3M6NDoiYXRvbSI7czoyNDoiL2pjbGlucGF0aC83NS80LzIxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 41. Chauvin J-M , Pagliano O , Fourcade J , et al . TIGIT and PD-1 impair tumor antigen-specific CD8⁺ T cells in melanoma patients. J Clin Invest 2015;125:2046–58.[doi:10.1172/JCI80445](http://dx.doi.org/10.1172/JCI80445) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25866972 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1172/JCI80445&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=25866972&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 42. Tamura T , Ohira M , Tanaka H , et al . Programmed death-1 ligand-1 (PDL1) expression is associated with the prognosis of patients with stage II/III gastric cancer. Anticancer Res 2015;35:5369–76.pmid:http://www.ncbi.nlm.nih.gov/pubmed/26408698 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImFudGljYW5yZXMiO3M6NToicmVzaWQiO3M6MTA6IjM1LzEwLzUzNjkiO3M6NDoiYXRvbSI7czoyNDoiL2pjbGlucGF0aC83NS80LzIxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 43. Wang F , Hou H , Wu S , et al . TIGIT expression levels on human NK cells correlate with functional heterogeneity among healthy individuals. Eur J Immunol 2015;45:2886–97.[doi:10.1002/eji.201545480](http://dx.doi.org/10.1002/eji.201545480) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26171588 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1002/eji.201545480&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=26171588&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 44. Jin H-seung , Ko M , Choi D-som , et al . CD226 hi CD8 + T Cells Are a Prerequisite for Anti-TIGIT Immunotherapy. Cancer Immunol Res 2020;8:912–25.[doi:10.1158/2326-6066.CIR-19-0877](http://dx.doi.org/10.1158/2326-6066.CIR-19-0877) [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FuaW1tIjtzOjU6InJlc2lkIjtzOjc6IjgvNy85MTIiO3M6NDoiYXRvbSI7czoyNDoiL2pjbGlucGF0aC83NS80LzIxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 45. Hung AL , Maxwell R , Theodros D , et al . TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology 2018;7:e1466769.[doi:10.1080/2162402X.2018.1466769](http://dx.doi.org/10.1080/2162402X.2018.1466769) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30221069 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1080/2162402X.2018.1466769&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 46. Maas RJ , Hoogstad-van Evert JS , Van der Meer JM , et al . TIGIT blockade enhances functionality of peritoneal NK cells with altered expression of DNAM-1/TIGIT/CD96 checkpoint molecules in ovarian cancer. Oncoimmunology 2020;9:1843247.[doi:10.1080/2162402X.2020.1843247](http://dx.doi.org/10.1080/2162402X.2020.1843247) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33224630 [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 47. Han D , Xu Y , Zhao X , et al . A novel human anti-TIGIT monoclonal antibody with excellent function in eliciting NK cell-mediated antitumor immunity. Biochem Biophys Res Commun 2021;534:134–40.[doi:10.1016/j.bbrc.2020.12.013](http://dx.doi.org/10.1016/j.bbrc.2020.12.013) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33341068 [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 48. Chauvin J-M , Ka M , Pagliano O , et al . IL15 stimulation with TIGIT blockade reverses CD155-mediated NK-cell dysfunction in melanoma. Clin Cancer Res 2020;26:5520–33.[doi:10.1158/1078-0432.CCR-20-0575](http://dx.doi.org/10.1158/1078-0432.CCR-20-0575) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32591463 [Abstract/FREE Full Text](http://jcp.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6MTA6IjI2LzIwLzU1MjAiO3M6NDoiYXRvbSI7czoyNDoiL2pjbGlucGF0aC83NS80LzIxNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 49. Offringa R , Glennie MJ . Development of next-generation immunomodulatory antibodies for cancer therapy through optimization of the IgG framework. Cancer Cell 2015;28:273–5.[doi:10.1016/j.ccell.2015.08.008](http://dx.doi.org/10.1016/j.ccell.2015.08.008) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26373272 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1016/j.ccell.2015.08.008&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=26373272&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom) 50. Sanchez-Correa B , Lopez-Sejas N , Duran E , et al . Modulation of NK cells with checkpoint inhibitors in the context of cancer immunotherapy. Cancer Immunol Immunother 2019;68:861–70.[doi:10.1007/s00262-019-02336-6](http://dx.doi.org/10.1007/s00262-019-02336-6) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30953117 [CrossRef](http://jcp.bmj.com/lookup/external-ref?access_num=10.1007/s00262-019-02336-6&link_type=DOI) [PubMed](http://jcp.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjclinpath%2F75%2F4%2F217.atom)