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Seràgnoli’’, Bologna University
School of Medicine, Bologna,
Italy; 2 Institute of Pathology,
Triemli Hospital, Zurich,
Switzerland; 3 Institute of
Haematology, Perugia University
School of Medicine, Perugia,
Italy

Correspondence to:
Professor Stefano A Pileri, Chair
of Pathology and Unit of
Haematopathology, Department
of Haematology and Clinical
Oncology ‘‘L and A Seràgnoli’’,
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ABSTRACT
Peripheral T cell lymphomas (PTCL) account for about
12% of lymphoid tumours worldwide. Almost half show
such morphological and molecular variability as to hamper
any further classification, and to justify their inclusion in a
waste-basket category termed ‘‘not otherwise specified
(NOS)’’. The latter term is used for neoplasms with
aggressive presentation, poor response to therapy and
dismal prognosis. In contrast to B cell lymphomas, PTCL
have been the subject of only a limited number of studies
to elucidate their pathobiology and identify novel
pharmacological approaches. Herewith, the authors revise
the most recent contributions on the subject based on the
experience they have gained in the extensive application
of microarray technologies. PTCL/NOS are characterised
by erratic expression of T cell associated antigens,
including CD4 and CD52, which have recently been
proposed as targets for ad hoc immunotherapies. PTCL/
NOS also show variable Ki-67 marking, with rates .80%
heralding a worse prognosis. Gene expression profiling
studies have revealed that PTCL/NOS derive from
activated T lymphocytes, more often of the CD4+ type,
and bear a signature composed of 155 genes and related
products that play a pivotal role in cell signalling
transduction, proliferation, apoptosis and matrix remo-
delling. This observation seems to pave the way for the
use of innovative drugs such as tyrosine kinase and
histone deacetylase inhibitors whose efficacy has been
proven in PTCL primary cell cultures. Gene expression
profiling also allows better distinction of PTCL/NOS from
angioimmunoblastic T cell lymphoma, the latter being
characterised by follicular T helper lymphocyte derivation
and CXCL13, PD1 and vascular endothelial growth factor
expression.

Peripheral T cell lymphomas (PTCL) represent
approximately 12% of lymphoid neoplasms.1

Their incidence varies among countries, and it is
higher in human T-cell lymphotropic virus-1
endemic areas.1 PTCL are a heterogeneous group
of tumours that can be roughly subdivided into:
specified and not otherwise specified (NOS)
(Box 1).1 2 While specified tumours correspond to
distinct but rare entities often occurring at extra-
nodal sites, NOS represent the commonest type of
TCL (40–50%), followed by the angioimmunoblas-
tic (AITL) and the anaplastic large cell (ALCL)
types.

PTCL/NOS cannot be further classified based on
morphology, phenotype and molecular biology in
most instances,3–5 although rare distinctive variants
have been reported (ie, follicular and lymphoe-
pithelioid).6–8 Usually, PTCL/NOS occurs in the
fifth to sixth decade of life, and there is no evidence

of sex predilection.4 9 10 PTCL/NOS more often
presents in stage III–IV, with nodal, skin, liver,
spleen, bone-marrow or peripheral blood involve-
ment.4 9 10

The tumour is highly variable in terms of cell
morphology and may contain prominent reactive
components.1 3

Immunohistochemistry usually shows T cell
associated molecule expression, although the phe-
notypic profile is aberrant in about 80% of cases.1 3

Clonal rearrangements of T cell receptor encod-
ing genes are generally detected.11 The karyotype is
aberrant in most cases, and is often characterised
by complex abnormalities.12 Recently, recurrent
chromosomal gains and losses have been documen-
ted in PTCL/NOS by comparative genomic hybri-
disation, and these have been found to differ from
those seen in AITL and ALCL.12 13

The molecular pathobiology of PTCL/NOS, as in
general in all T cell neoplasms, is poorly under-
stood. In particular, only limited numbers of
studies have explored the gene expression profile
(GEP).14–22

On clinical grounds, PTCL/NOS are among the
most aggressive non-Hodgkin lymphomas. Their
response to conventional chemotherapy is indeed
poor, with 5-year relapse-free and overall survival
rates of 26% and 20%, respectively.4 5 9 23–26 Neither
the morphology nor the international prognostic
index (IPI) significantly correlates with the out-
come. Clinical or clinicobiological scores have been
proposed to identify cases with different prog-
noses.26 27 However, the molecular bases of PTCL/
NOS drug resistance and aggressiveness remain
elusive.

In the following, the results recently obtained by
our group through the extensive application of
microarray technologies will be summarised and
commented on, with the scope of defining the
pathobiological characteristics of PTCL/NOS, tra-
cing the borders between it and AITL on the one
hand and anaplastic large cell lymphoma kinase
(ALK)-negative ALCL on the other, and drawing
attention to potentially novel prognosticators and
therapeutic targets.19–22 27

PHENOTYPIC PROFILE OF PTCL/NOS
As mentioned above, PTCL/NOS usually carry
phenotypic aberrations, the exact prevalence and
spectrum of which have remained unre-
solved.8 11 25 28 In 2006, we reported PTCL from
193 Italian patients (148 NOS and 45 AITL) that
had been collected on tissue microarrays and tested
by immunohistochemistry and Epstein–Barr virus
encoded RNA 1 (EBER1) and EBER2 in situ
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hybridisation.27 The bF1 antibody (raised against the T cell
receptor b chain) reacted with 96% of tumours. NOS and AITL
PTCL demonstrated frequent loss of CD5 and CD7, with CD3
being the conventional marker most commonly expressed in
NOS types, and CD2 in the AITL types. CD4 was detected in
46% of cases (see fig 1A) and CD8 in 15% of cases; these results
are in line with those reported in previous publications.8 11 25 28 29

Interestingly, we found 32% of AITLs to be CD8+; this is in the
upper range of reported values.27 30–44 In contrast, the incidence
of CD4 positivity (42%) was much lower than expected.27 45

Interestingly, a huge number of PTCL/NOS and AITL (55%)
turned out to be either CD4/CD8 double-negative or, more
rarely, double-positive. Such profiles, which are usually
observed during intrathymic T cell development,1 27 had
previously been reported in isolated PTCL cases46 47 and a
proportion of cutaneous T cell tumours.27 48 Furthermore, CD10
expression was detected in only 39% of AITL, even when
adopting a low cut-off value.27 Such rates did not vary between
tissue microarrays and conventional sections.

CD56 was detected in 5% of PTCL/NOS: all cases stained
with bF1 and three co-expressed TIA-1. Interestingly, CD56
expression suggests a malignant phenotype: in fact, under
physiological conditions it is limited to T lymphocytes with
spontaneous non-MHC-restricted cytotoxicity.27 49 CD57 was
seen in 10% and 5% of PTCL/NOS and AITL respectively.
Although numbers of CD57+ normal T lymphocytes increase
with age,49 no correlation was found between patient age and
CD57 expression.27 50

CD30 was recorded in 6% of cases (see fig 1B), CD15 in 4%,
and CD20 in 1%27; these rates of positivity may undoubtedly
cause diagnostic difficulties. In particular, CD20 was detected in
only two PTCL/NOS that were negative for CD79a, in keeping
with previous observations of CD20 positivity in isolated PTCL/
NOS, and CD79a aberrant expression in ‘‘specified’’ PTCL.27 51–53

Co-expression of CD15 and CD30 was found in only 3/183 of
cases that were able to be evaluated. This is the first reliable
estimate of the random incidence of such a phenomenon in a
large cohort of patients with PTCL; in fact, the previous reports
of Barry et al54 and Gorczyka et al55 referred to a highly selected
series. In spite of its rarity, such a finding raises the question of
how to differentiate between PTCL and classic Hodgkin
lymphoma (CHL) under these circumstances: the polymorph-
ism of neoplastic elements, the possible lack of Reed-Sternberg
cells and B cell specific activator protein negativity favour the
diagnosis of PTCL and vice versa. In particular, B cell specific
activator protein is a valuable B cell marker that is found in
about 90% of cases of CHL,56 but it is exceptional in PTCL/
NOS.57

In our hands, the mean percentage of Ki-67+ neoplastic cells
was around 50%, with 11% of PTCL/NOS exceeding the 80%
value. Finally, EBV integration was found at the neoplastic cell
level in 5% and 3% of PTCL/NOS and AITL respectively; this
value is definitely lower than the one recorded by Dupuis et al in
a French cohort.58

GEP OF PTCL/NOS
PTCL have been the subject of a limited number of GEP
studies14–22 59 60 (table 1). In particular, Tracey et al,60 Lamant et
al16 and de Leval et al17 focused on mycosis fungoides, ALK-
positive and -negative ALCLs, and AITL, respectively. In
contrast, Martinez-Delgado et al14 and Ballester et al15 analysed
large collections of PTCL of the NOS, AITL and ALCL types.
However, their studies suffered limitations that varied from the
usage of chips with a restricted number of genes14 15 to the lack
of a reliable normal counterpart for comparison.14 Martinez-
Delgado et al14 reported that PTCL/NOS corresponded to a
heterogeneous group of tumours whose GEP was difficult to
interpret due to the amount of infiltrating reactive cells.
According to those authors, the only clinically relevant
information provided by GEP pertains the NF-kB gene expres-
sion level (see below).14 Ballester et al15 reported that GEP could
discriminate among PTCL of the NOS, AITL and ALCL types,
although NOS did not share a single profile. Using a multiclass
predictor, the authors separated their cases into three molecular
subgroups: U1, U2 and U3. However, the corresponding
signatures might have been, at least in part, influenced by
reactive components, as suggested by the fact that, for instance,
the U3 subgroup consisted almost entirely of histiocyte-rich
tumours.

Recently, we20 published a GEP study based on the analysis of
28 PTCL/NOS, all corresponding to lymph node biopsy samples
containing an amount of neoplastic cells exceeding 70% value of
the whole examined population. The mRNA extracted from
these cases was hybridised on the HG U133 2.0 Plus gene chip.
The results obtained were compared with those of six AITL, six
ALCL (two ALK-positive and four ALK-negative) and 20
samples of normal T lymphocytes, which were purified from
the peripheral blood and tonsil and corresponded to the main
T cell subsets (CD4+, CD8+, resting and activated). Such a
study significantly differed from most previous reports14 60 in
terms of methodology and selection criteria. In addition, for the
first time it provided the rationale for possible targeted therapies

Box 1: Mature T cell and NK cell neoplasms1

Peripheral T cell lymphoma, not otherwise specified (PTCL/
NOS)

Peripheral T cell lymphoma, specified
Leukaemic:
c T cell prolymphocytic leukaemia
c T cell large granular lymphocytic leukaemia
c Aggressive NK cell leukaemia
c Systemic Epstein–Barr virus positive T cell lymphoproliferative

disease of childhood (associated with chronic active EBV
infection)

c Hydroa vaccineforme-like lymphoma
c Adult T cell leukaemia/lymphoma
Extranodal:
c Extranodal NK/T cell lymphoma, nasal type
c Enteropathy-associated T cell lymphoma
c Hepatosplenic T cell lymphoma
c Subcutaneous panniculitis-like T cell lymphoma
c Mycosis fungoides
c Sézary syndrome
c Primary cutaneous anaplastic large-cell lymphoma
c Primary cutaneous aggressive epidermotropic CD8+ cytotoxic

T cell lymphoma (provisional entity)
c Primary cutaneous cd T cell lymphoma
c Primary cutaneous small/medium CD4+ T cell lymphoma

(provisional entity)
Prevalently nodal:
c Angioimmunoblastic T cell lymphoma
c Anaplastic large cell lymphoma (ALCL), anaplastic large cell

lymphoma kinase (ALK) positive
c ALCL, ALK negative (provisional entity)
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in PTCL/NOS by offering clear evidence of their ex vivo
effectiveness.

In particular, the GEP we detected20 indicated that PTCL/
NOS are distinct from normal T and B lymphocytes and are
more closely related to activated rather than resting T cells. As
in normal mature T lymphocytes, it was possible to identify
two main subgroups of PTCL/NOS, with GEPs related to either
CD4 or CD8 elements. Notably, this characteristic did not
reflect the expression of CD4 and CD8 molecules.

In addition to histogenetic information, our analysis20

provided several insights into the functional alterations of

PTCL/NOS. A careful comparison of PTCL/NOS with the
closest normal counterparts revealed the systematic deregula-
tion of 155 genes controlling functions that are typically
damaged in malignant cells, such as matrix remodelling, cell
adhesion, transcription, proliferation and apoptosis. In particu-
lar, our findings might explain the dissemination pattern of
PTCL/NOS, with frequent extranodal and bone-marrow
involvement and spread to peripheral blood,1 by showing the
upregulation of FN1, LAMB1, COL1A2, COL3A1, COL4A1,
COL4A2, and COL12A1 (ie, genes that promote local invasion
and metastasis in different types of human cancer).61–63 In

Figure 1 (A) Lymphomatous cells do
not express CD4; however, CD4 is
detected in some reactive small
lymphocytes (alkaline phosphatase anti-
alkaline phosphatase (APAAP) technique,
Gill’s haematoxylin nuclear
counterstaining, 6250). (B) Partial CD30
expression; it should be noted that the
tumour has no anaplastic morphology
(APAAP technique, Gill’s haematoxylin
nuclear counterstaining, 6250). (C)
Positivity for platelet-derived growth
factor receptor a (PDGFRa) (APAAP
technique, Gill’s haematoxylin nuclear
counterstaining, 6400). (D) PDGFRa is
phosphorylated (APAAP technique, Gill’s
haematoxylin nuclear counterstaining,
6400). (E) CXCL13 expression by
neoplastic elements in
angioimmunoblastic T cell (EnVision+
technique, Gill’s haematoxylin nuclear
counterstaining, 6100). (F) Ki-67 marking
exceeds the 80% value (EnVision+
technique, Gill’s haematoxylin nuclear
counterstaining, 6200). (G) CD52
positivity in a peripheral T cell lymphoma,
not otherwise specified (APAAP
technique, Gill’s haematoxylin nuclear
counterstaining, 6100). (H) Strong
expression of vascular endothelial growth
factor in an angioimmunoblastic T cell
lymphoma (EnVision+ technique, Gill’s
haematoxylin nuclear counterstaining,
6200).
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addition, it revealed the deregulation of genes involved in
apoptosis (eg, MOAP1, ING3, GADD45A and GADD45B)64–70

and chemoresistance (such as CYR61 and NNMT).61–63 71–82

Immunohistochemistry provided in situ validation of the
genomic data by showing correspondence between mRNA and
protein expression, as seen, for example, with GEP, PDGFRa

(see fig 1C and D) and BCL10. In addition, by comparison with
normal tissues, immunohistochemistry allowed the identifica-
tion of staining patterns corresponding to the synthesis of
ectopic or paraphysiological products by neoplastic cells. Finally,
the phenotypic test highlighted the possibility that some of the
results obtained by GEP may depend on non-neoplastic
components present in the analysed sample, as seen for
Caldesmon.

In the course of the same study, we found that all ALCLs
tended to cluster together – irrespective of their ALK positivity
or negativity – showing a signature distinct from those of
PTCL/NOS and AITL.20

More recently, we succeeded in identifying a gene signature
discriminating between PTCL/NOS and AITL (fig 2).22 In
addition, the observed AITL global profile strengthened its
derivation from the follicular T helper lymphocyte (FTHL), as
originally proposed by Rüdiger et al83 and de Leval et al.17 Among
upregulated genes, were those encoding for CXC13, PD1 and
vascular endothelial growth factor (VEGF).

PRACTICAL IMPLICATIONS OF PHENOTYPIC AND MOLECULAR
FINDINGS

Diagnosis
Along with clonality studies,11 the phenotype plays a basic role
in the distinction of PTCL from reactive conditions—such as
paracortex hyperplasia—that can mimic malignant lymphoma.
In fact, the lack of one or more T cell associated antigens (see
above) is a hallmark of neoplastic cells as opposed to the
complete phenotype of normal T lymphocytes.27

Immunohistochemical and molecular findings are also of great
value for differential diagnosis among PTCL.

PTCL/NOS versus AITL
Such distinction may be problematic in about 25% of cases,
based on conventional criteria.84 Also CD10 staining, proposed
as characteristic of AITL,85 86 is actually seen in less than 50% of
cases in our experience.27

Notably, the AITL gene signature recently reported by de
Leval et al17 and our group22 (see above) provides a rationale to
the immunohistochemical observations of Dupuis et al,87 Grogg
et al88 and Roncador et al89 who found that most, if not all, AITL
stain for typical FTHL-related antigens, such as CXCL13 (see
fig 1E) and PD-1. Such molecules can actually represent a
powerful tool for the distinction of AITL from PTCL/NOS, due
to the exceptional positivity of the latter, a finding also

Table 1 The main studies dealing with gene expression profiling of peripheral T cell lymphomas

Reference Disease(s) explored Comments

Tracey et al 60 FM The GEP of FM was investigated, and it showed concurrent deregulation of multiple genes involved in the tumour
necrosis factor signalling pathway.

Martinez-Delgado et al 14 PTCL/NOS The authors found significant differences between the peripheral and lymphoblastic T cell lymphomas. The
differences included a deregulation of the nuclear factor-kB signalling pathway.

Martinez-Delgado et al 98 PTCL/NOS The authors found two different subgroups of PTCL based on the expression of NF-kB related genes. One-third of
PTCL clearly showed reduced expression of NF-kB genes, while the other group was characterised by high
expression of these genes. Of interest, the expression profile associated with reduced expression of NF-kB genes
was significantly associated with shorter survival of patients.

Ballester et al 15 PTCL/NOS, AILT, ALCL According to this study, PTCL/NOS could be divided into three molecular subgroups: U1, U2 and U3. The U1 gene
expression signature included genes known to be associated with poor outcome in other tumours, such as CCND2.
The U2 subgroup was associated with overexpression of genes involved in T cell activation and apoptosis,
including NF-kB1 and BCL-2. The U3 subgroup was mainly defined by overexpression of genes involved in the IFN/
JAK/STAT pathway. Notably, such distinction possibly reflected, at least in part, the presence of reactive
components in the PTCL samples.

de Leval et al 17 AILT The molecular profile of AILT was characterised by a strong microenvironment and overexpression of several genes
characteristic of normal follicular helper T (TFH) cells: CXCL13, BCL6, PDCD1, CD40L and NFATC1. Such a finding
was reinforced by gene set enrichment analysis, which demonstrated that the AITL molecular signature was
significantly enriched in TFH-specific genes.

Piccaluga et al 20 PTCL/NOS The authors showed that PTCL/NOS are most closely related to activated peripheral T lymphocytes, either CD4+ or
CD8+, based on the GEP. In addition, PTCL/NOS displayed deregulation of relevant functional cell programmes. In
particular, among others, PDGFRA, a gene encoding for a tyrosine kinase receptor, turned out to be aberrantly
expressed by PTCL/NOS. Notably, phosphorylation of PDGFRA and sensitivity of cultured PTCL cells to imatinib
were demonstrated.

Piccaluga et al 21 PTCL/NOS The authors found that CD52 is expressed in approximately 40% of PTCL/NOS at the same level as in normal T
lymphocytes, being aberrantly downregulated in the remaining cases. Notably, they concluded that the estimation
of CD52 expression may provide a rationale for the selection of patients with a higher probability of response to the
anti-CD52 antibody alemtuzumab.

Piccaluga et al 22 AILT In this manuscript, the authors reported that AILT and other PTCL have rather similar GEP, possibly sharing common
oncogenic pathways. In addition, they found that the molecular signature of follicular T helper cells was
significantly overexpressed in AILT. Finally, several genes, such as PDGFRA and VEGF, which are deregulated in
AILT and represent potential therapeutic targets, were identified.

Lamant et al 16 ALCL This was the first study to focus on ALCL. Unsupervised analysis classified ALCL in two clusters, corresponding
essentially to morphological subgroups and clinical variables. Supervised analysis showed that ALK-positive ALCL
and ALK-negative ALCL have different GEP, further confirming that they are different entities.

Cuadros et al 18 PTCL/NOS Five clusters of genes were identified, and their expression varied significantly among the samples. Genes in these
clusters were functionally related to different cellular processes such as proliferation, inflammatory response, and T
cell or B cell lineages. Notably, overexpression of genes in the proliferation signature was significantly associated
with shorter survival of patients.

AILT, peripheral T cell lymphoma, angioimmunoblastic type; ALCL, anaplastic large cell lymphoma; ALK, anaplastic large cell lymphoma kinase; FM, mycosis fungoides; GEP, gene
expression profile; PDGFRA, platelet-derived growth factor receptor a; PTCL/NOS, peripheral T cell lymphoma, not otherwise specified.
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confirmed in our PTCL tissue microarray (unpublished observa-
tion).

PTCL/NOS versus ALCL
Lamant et al16 reported that ALK-positive and ALK-negative
ALCL have different GEPs. In particular, they found that BCL-6,
PTPN12, C/EBPb and serpinA1 genes overexpressed in ALK-
positive ALCL, a result also confirmed at the protein level. In
contrast, the molecular signature of ALK-negative ALCL
included overexpression of CCR7, CNTFR, IL22 and IL21 genes,
but did not provide any obvious clues to its molecular
pathogenesis. This led to the question of whether ALK-negative
ALCL should be included in PTCL/NOS. In the course of our
GEP study, we found that all ALCL tended to cluster together
irrespective of their ALK status, and this signature was clearly
distinct from that of PTCL/NOS.20 In addition to suggesting
that ALK-positive and ALK-negative ALCL probably share a set
of deregulated pathways, our findings did not support the
proposal that ALK-negative ALCL is a subtype of PTCL/NOS.
Such a viewpoint is strengthened by the results of a recent
clinicopathological trial showing that ALK-negative ALCL—
although more aggressive than ALK-positive ALCL—has 5-year
failure-free and overall survival rates that are significantly better
than PTCL/NOS.84

Prognosis

EBV, CD15 and proliferation
In our series of Italian patients, we found that high Ki-67
expression (see fig 1F), EBV status and CD15 staining were
associated with the worst outcome in PTCL/NOS.27

Interestingly, a proliferation signature has recently been
reported to correlate with an aggressive clinical course,18 and
EBV has repeatedly been proposed as a negative prognosticator
in PTCL.58 90 91 No other phenotypic marker alone or in
combination was associated with a poor outcome, although
patients with tumours expressing a CD57 or CD4+/CD82

profile showed a tendency towards a more favourable outcome,
as also observed by others.25 48

Clinicopathological score
Based on our collective results and those published in the
literature,26 58 92–96 we developed a new score that integrates
patient- and tumour-specific characteristics (age >60 years,
performance status, lactate dehydrogenase, and Ki-67 marking
.80%) and identifies three clear-cut groups of patients with
different prognosis. Such a score seems to be more effective than
previous indices, including international prognostic index and
prognostic index for peripheral T cell lymphoma, not otherwise
specified.26

CYP3A
Recently, Rodrı́guez-Antona et al97 measured tumour CYP3A
mRNA content in 44 T cell lymphomas and found a large
variation in its expression that might be due to gains affecting
the corresponding gene. To test whether CYP3A could influence
PTCL treatment outcome, its expression levels were compared
with the patient clinical response and survival, and it was
observed that a high CYP3A4 expression was significantly
associated with a lower complete remission rate. These results
indicate that CYP3A as a potential predictor of tumour
chemosensitivity.

NF-kB pathway
Different GEP studies have suggested that PTCL/NOS may
show up- or downregulation of NF-kB molecules,14 15 98 with
possible prognostic implications (see above).14 98 However, these
studies included a limited number of PTCL/NOS14 or cases with
prominent non-neoplastic components.15 By contrast, we found
that PTCL/NOS mostly consisting of neoplastic cells present
with global downregulation of NF-kB genes in comparison with
normal T lymphocytes. This observation was corroborated by
consistent cytoplasmic localisation of NF-kB molecules, the
latter moving to the nucleus in the case of NF-kB pathway
activation (unpublished observation).

Therapy
CD4 and CD52 expression
The in vivo administration of monoclonal antibodies targeted to
CD4 and CD52 has recently been proposed for the treatment of
patients with PTCL.99 However, in our experience this should be
regarded with caution when referring to PTCL/NOS. The latter,
in fact, characteristically lacks the expression of one or more
T cell associated antigens, including those antigens that these
antibodies are targeted towards. In particular, we found that
CD4 is lacking at the neoplastic cell level in up to 50% of cases.27

CD52 is a molecule expressed by most peripheral blood
lymphocytes, macrophages, and monocytes.102 Campath-1H
(alemtuzumab) is a humanised antibody against CD52 cur-
rently approved for B cell chronic lymphocytic leukaemia
therapy,103–106 and it has also shown interesting activity in
T prolymphocytic leukaemia and cutaneous TCLs.107 Although
other factors can affect its response in vivo, the lack of CD52
expression may play a major role in causing refractoriness to

Figure 2 Peripheral T cell lymphoma, not otherwise specified (PTCL/
NOS), and peripheral T cell lymphoma, angioimmunoblastic type (AILT),
can be distinguished according to their gene expression profile. Eighty-
three differentially expressed genes are plotted in the matrix.
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the compound. Few data are available regarding the use
alemtuzumab in PTCL/NOS.108 109 We studied the expression
of CD52 on tissue microarrays containing 97 PTCL/NOS.21 In
addition, in 28 cases for which frozen material was available,
GEP were generated and compared with those of 20 samples of
normal T lymphocytes.21 We found that 17/28 (60%) PTCL/
NOS showed CD52 gene expression level lower than the lowest
one recorded in normal T cells.21 In addition, the gene product
was detected by immunohistochemistry in 40/97 (41%) PTCL
(see fig 1G).21 Interestingly, such data are in keeping with the
clinical results obtained by Enblad et al108 who found an overall
response rate of 36% in PTCL treated with alemtuzumab. Based
on these findings, we think that the estimation of CD52
expression may provide a rationale for the selection of patients
with higher probability of responding to alemtuzumab, by
avoiding the risk of unwanted toxicity.21 Similar conclusions
were achieved by Rodig et al100 and Chang et al,101 who reported
immunohistochemical detection of CD52 in 0–40% of PTCL.

PDGFRa
The regular detection of PDGFRa overexpression at the mRNA
and protein levels, as well as its frequent phosphorylation (see
fig 1D), prompted us20 to design an ex vivo experiment aimed
testing the sensitivity of PTCL/NOS cells to imatinib, a well-
known PDGFRa inhibitor.110 The results obtained were of
interest, with about 50% cytotoxic effect seen at 48 h with a
1 mmol concentration. Such an effect became even higher (75%)
with a 10 mmol dose. Notably, imatinib exerted a limited effect
on the viability of normal lymphocytes.

Histone deacetylation
Since silencing of certain genes (such as GADD45A and
GADD45B) can be regulated by epigenetic mechanisms

including acetylation, we tested a histone deacetylase inhibitor
(HDACi) (ITF2357) against PTCL/NOS primary cells. Notably,
the compound induced dramatic G0–G1 cell cycle arrest and
apoptosis at therapeutic concentrations, suggesting a possible
role for this class of drugs in PTCL/NOS therapy, as also
supported by preliminary clinical observations.111 Interestingly,
the combination of ITF2357 and daunorubicin apparently had a
slight additive effect, as already observed with other HDACi.112

VEGF
Recently, we observed upregulation of the VEGF gene in AITL.22

The same finding had previously been reported by de Leval et
al17 who had attributed it to the rich vascular component of the
tumour. However, by immunohistochemistry on tissue micro-
arrays, we showed that neoplastic cells strongly express both
VEGF (see fig 1H) and its receptor KDR.22 This fact suggests
possible AITL sensitivity to anti-angiogenetic drugs, such as
thalidomide and bevacizumab.113

CONCLUSIONS
For a long time, PTCL have represented an orphan pathology.
This can be explained by their relatively low prevalence (which
is in any case higher than that of a ‘‘common’’ tumour, such as
CHL), diagnostic difficulties and dismal prognosis. Based on
recent advances in the genomic and translational fields, a new
scenario can now be envisaged leading the way to more
successful therapeutic strategies. This may be the right time
to live a dream, never forgetting however that ‘‘the truth is not
always pure and never simple’’ (Oscar Wilde).
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